A proof of Sobolev’s Embedding Theorem for Compact Riemannian Manifolds

ثبت نشده
چکیده

Observe that H 0 (M) = L p(M). Also, Hk := H2 k is a Hilbert space under the L2-inner product. F k contains only smooth functions. In general, a sequence in F k will not converge in the H k norm to a function in F k , so we need to complete the space to have anything useful. An alternate approach would have been to start with functions in Lp rather than completing the space of smooth functions in F k .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

The Structure of Compact Ricci-flat Riemannian Manifolds

where k is the first Betti number b^M), T is a flat riemannian λ -torus, M~ is a compact connected Ricci-flat (n — λ;)-manifold, and Ψ is a finite group of fixed point free isometries of T x M' of a certain sort (Theorem 4.1). This extends Calabi's result on the structure of compact euclidean space forms ([7] see [20, p. 125]) from flat manifolds to Ricci-flat manifolds. We use it to essentiall...

متن کامل

Index Theorem for Equivariant Dirac Operators on Non-compact Manifolds

Let D be a (generalized) Dirac operator on a non-compact complete Riemannian manifold M acted on by a compact Lie group G. Let v : M → g = LieG be an equivariant map, such that the corresponding vector field on M does not vanish outside of a compact subset. These data define an element of K-theory of the transversal cotangent bundle to M . Hence, by embedding of M into a compact manifold, one c...

متن کامل

On Locally Lipschitz Locally Compact Transformation Groups of Manifolds

In this paper we show that a “locally Lipschitz” locally compact transformation group acting continuously and effectively on a connected paracompact locally Euclidean topological manifold is a Lie group. This is a contribution to the proof of the Hilbert-Smith conjecture. It generalizes the classical Bochner-Montgomery-Kuranishi Theorem[1, 9] and also the Repovš-Ščepin Theorem [17] which holds ...

متن کامل

Growth of Sobolev norms of solutions of linear Schrödinger equations on some compact manifolds

We give a new proof of a theorem of Bourgain [4], asserting that solutions of linear Schrödinger equations on the torus, with smooth time dependent potential, have Sobolev norms growing at most like t when t→ +∞, for any > 0. Our proof extends to Schrödinger equations on other examples of compact riemannian manifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003